Oxford Cambridge and RSA

GCSE

Mathematics (9-1)

Unit J560/06: Paper 6 (Higher Tier)
General Certificate of Secondary Education
Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

1. Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
\boldsymbol{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The $\mathbf{M}, \mathbf{A}, \mathbf{B}$ etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

2. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
\mathbf{B} marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
3. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
4. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their $\left.{ }^{\prime} 5^{2}+7^{2 \prime}\right)$. Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
5. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
6. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

7. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
8. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
9. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
10. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
11. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.

If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
12. Ranges of answers given in the mark scheme are always inclusive.
13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1		8, 8, 13 and 15	3	B2 for 3 or 4 numbers with at least two conditions met out of: - At least two numbers are 8 - The range is 7 - The total is 44 or B1 for 4 numbers with one condition met or 44 seen	Accept any order Examples: B2 for 8, 8, 10.5, 17.5 B2 for 8, 8, 8, 20 B2 for $8,8,28$ B2 for 1, 8, 8 B1 for 8, 8, 8, 8 BO for 8, 8
2		18 nfww	4	B1 for [green] 36 or ratio(s) equivalent to $5: 9: 36$ AND M2 for $\frac{\text { their } 9}{\text { their }(5+9+36)}[\times 100]$ or M1 for their $(5+9+36)$ soi	For B1 accept 5:36 or 9: 36 or ratio(s) involving a common term for blue eg $10: 18$ and $18: 72$ eg 1:1.8:7.2 eg $\frac{5}{9}: 1$ [: 4] (decimals should be accurate rot to 3 figs) Their $(5+9+36)$ must come from a ratio (or ratios) with a common term. $1+4+5+9=19$ followed by $\frac{5}{19}$ scores $\mathbf{0}$.

Question		Answer	Marks	Part marks and guidance	
3		$\frac{300 \times(7-3)}{60}=20$ AND it is close to 19.5 oe or 19.5 rounds to 20 oe or [Asha's estimate] is reasonable	3	B2 for 300, 7, 3 and 60 seen or B1 for two of 300, 7, 3 and 60 seen or 300,4 and 60 seen or 300.0, 7.0, 3.0. 60.0 AND B1dep for result 20 and correct conclusion following B1 or B2	Actual answer 19.475959...(may be rounded) scores 0 Accept "Yes" or "She's right" or "It is" or equivalent comment
4	(a)	$a^{5} \times a^{6}=a^{5+6}=a^{11}$ or $a^{5} \times a^{3} \times a^{3}=a^{5+3+3}=a^{11}$	2	B1 for $\left[\left(a^{3}\right)^{2}=\right] a^{6}$ or $a^{3} \times a^{3}$ Alternative: $\begin{aligned} & \text { B2 for }\left[a^{5} \times\left(a^{3}\right)^{2}=\right] \\ & a \times a \times \ldots \times a\left[=a^{11}\right] \end{aligned}$ or B1 for [$\left.\left(a^{3}\right)^{2}=\right] a \times a \times a \times a \times a \times a$	a^{5+6} or a^{5+3+3} or intent to add indices stated or unambiguously indicated (eg $5+6$, add indices etc) written in full with eleven a's. written in full with six a's May be implied by ($a \times a \times a \times a \times a \times a$) seen within an incorrect lengthier product.
	(b)	5^{15}	3	B1 for $\left[\frac{1}{125}=\right] 5^{-3}$ or $[125=] 5^{3}$ B1 for 5^{18}	

Question		Answer	Marks	Part marks and guidance	
5	(a)	$y=0.75 x+2$ oe	3	B2 for $y=0.75 x[+c]$ or answer $0.75 x+2$ OR M1 for attempt at $\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}$ soi by $\frac{ \pm(5-2)}{ \pm(4-0)}$ or ± 0.75 and B1 for $y=k x+2$ with $k \neq 0$	ISW after a correct equation if attempting rearrangement Accept oe throughout eg B2 for $4 y=3 x$ Examples: M1B1 for $y=-0.75 x+2$ M1B0 for $0.75,0.75 \mathrm{x},-0.75,-0.75 \mathrm{x}$ If gradient inverted: M0B1 for $y=1.3 x+2$ MOBO for $1.3 x+2, y=1.3 x$ Condone poorly written $3 / 4 x$ unless clearly 3 over $4 x$.
	(b)	3 nfww	3	M2 for $12=16-4 k+8$ or better OR M1 for $12=-4^{2}+-4 \times k+8$ or sign errors in $12=16-4 k+8$ or better or $k=\frac{y-x^{2}-8}{x}$	Condone -4 not in brackets but $12=-4^{2}+k-4+8$ with no times sign or dot between k and -4 scores 0 unless subsequently clarified.

Question	Answer	Marks	Part marks and guidance	
(c)	Using symmetry: Q is $(0,8)$ Midpoint, M , of AQ is at $(0,5)$ MB is perpendicular to QA So isosceles/Diann is correct OR Using Pythagoras: Q is $(0,8)$ $\mathrm{AB}^{2}=4^{2}+3^{2}$ oe or $\mathrm{AB}=5 \mathrm{nfww}$ or $\mathrm{QB}^{2}=4^{2}+(\text { their } 8-5)^{2}$ or $\mathrm{QB}=5$ nfww $\mathrm{AB}=5 \text { and } \mathrm{QB}=5$ or $\mathrm{AB}^{2}=25$ and $\mathrm{QB}^{2}=25$ $\mathrm{AB}=\mathrm{QB}$ or "two sides are equal" oe so isosceles/Diann is correct OR Using trig: Q is $(0,8)$ $\begin{aligned} & \tan \mathrm{BAQ}=4 / 3[=53.1] \\ & \tan \mathrm{BQA}=4 / 3[=53.1] \end{aligned}$ $B A Q=B Q A$ or "two angles are equal" oe so isosceles/Diann is correct	1	dep mark is always dependent on 3 marks being achieved Accept implied symmetry	For first mark in all methods, condone [Q =] 8 or [QA =] 8-2 or 6, seen in working or on diagram. eg $8-5=3$ and $5-2=3$ so B is in the middle of A and Q May see "midpoint" or any other letter for M
		1		
		1dep		
		OR		
		1	descriptions of translations $\mathbf{1}$ for Q is $(0,8)$	Condone poor notation, such as missing vector brackets or fraction lines in vectors if intention is clear.
		1	1 for gradients/vectors/descriptions of translations for both $A B$ and $Q B$ (must be seen together in part (c): eg	
		1	gradients: $\mathrm{AB}=3 / 4$ and $\mathrm{QB}=-3 / 4$ (may be implied from the equations of the two lines)	eg gradient $\mathrm{AB}=3 / 4$ and gradient $\mathrm{QB}=-3 / 4$ scores a max of 1100
		1dep	descriptions: AB is 4 along (treat as in positive sense) and 3 up and QB is 4 along and 3 down oe	eg gradient $A B=3 / 4$ and gradient $Q B=-3 / 4$, so triangle is isosceles also scores a max of 1100
		OR	approach needs to be developed to justify isosceles, such as by	
		1	switching to the $3^{\text {rd }}$ and $4^{\text {th }}$ marks of the Pythagoras or trig methods.	Warnings: dimensions of triangle shown as
		1 1		(8-2), 4, 4 and isosceles stated is B1 only; blank answer space but BQ drawn on diagram is $\mathbf{0}$ not NR.
		1dep	9	

Question		Answer	Marks	Part marks and guidance	
8	(a)	0.3 oe	2	M1 for $\frac{[\pm] 6}{85-65}$ oe or answer -0.3 If $\mathbf{0}$ scored, allow SC1 for $0.092[3 \ldots]$ or $\frac{6}{65}$ as final answer	Allow unsimplified equivalents for full marks eg. $\frac{6}{20}$
	(b)	255	3	M2 for valid method to find complete area under the graph using one or more parts OR M1 for attempt to find partial area below the graph	M2 examples: eg $\frac{85 \times 6}{2}$ oe or two triangles soi by 195 and 60 or [rectangle] $6 \times 85-$ two triangles oe M1 examples a triangle between $t=0$ and 65 or a triangle between $t=65$ and 85 or [rectangle] 6×85 - one triangle MO for [rectangle] 6×85 Allow full marks for equivalent with units stated eg. 0.255 km

Question		Answer	Marks	Part marks and guidance	
	(c)	$21.6 \text { or } \frac{108}{5} \text { or } 21 \frac{3}{5} \mathrm{nfww}$	4	B1 for 6 soi AND M2 for $\frac{\text { their } 6 \times 60 \times 60}{1000}$ oe or M1 for their $6 \times 60 \times 60$ oe soi 21 600 or their $6 \div 1000$ oe soi 0.006 or $\frac{60 \times 60}{1000}$ oe soi 3.6	Condone missing or incorrect units in working eg 6 m for $6 \mathrm{~m} / \mathrm{s}$ their 6 could be the average speed 255/85 21600 or 0.006 imply B1M1
9	(a)	-6	1		
	(b)	$[x=4,] y=24$ Change of sign, so p lies between 3 and 4 oe	2	B1 for 24 seen If using $3.27<x<4$ rather than 4: SC2 evaluate y correctly (see table in (c)), state change of sign oe and that because $3<p<$ their x-value, then so $3<p<4$. 0 for just evaluating y.	After $x=4, y=24$ scored: Examples just sufficient for second mark include: change of sign $\begin{gathered} -6<0<24 \\ x=3 \text { gives an answer }<0 \text { and } \\ \quad x=4 \text { gives an }>0 \end{gathered}$ Examples insufficient for second mark: so p lies between 3 and 4

Question			Answer	Marks	Part marks and guidance	
14	(a)		```\(21.45 \times 4663 \div 100000=1.0002[1 .\). (km) or \(21.45 \times 4663=\) 100020 to \(100021.4>100000(\mathrm{~cm})\) or. \(100000 \div 21.45=4662[.0 .]<\). or \(100000 \div 4663=21.44[5 .]<\). \\ Note the first method does not require a comparison against 1 (km)```	4	B1 for (minimum length =) 21.45 seen B1 for $1 \mathrm{~km}=100000 \mathrm{~cm}$ soi oe such as $\div 100$ then $\div 1000$ or use of $1 \mathrm{~m}=100 \mathrm{~cm}$ and $1 \mathrm{~km}=1000 \mathrm{~m}$ if working in metres. M1 for their $21.45 \times 4663(\div 100000)$ or $100000 \div \text { their } 21.45$ or $100000 \div 4663$ If M0 scored, allow SC1 for $k \times 4663(\div 100000)$ or $100000 \div k$ with k in the range 10.25 to 10.35 or 6.45 to 6.55	Allow access to all marks if brick and 1 km are in consistent units. Allow these conversions even with their volume or surface area. eg $21.5 \times 10.3 \times 6.5=1439.425$ $\mathrm{cm} / \mathrm{cm}^{2} / \mathrm{cm}^{3}=0.01439425 \mathrm{~km}$ their 21.45 must be in the range 21.45 to 21.55 but accept equivalent if attempting the unit conversion first eg B0B0M1 for $21.5 \mathrm{~cm}=0.0215 \mathrm{~km}$ followed by 0.0215×4663 Thus, use of width or height of the brick may score B0,B1,SC1 whereas use of volume may score B0/1,B1,SC0 Accept equivalent if working in m or km
	(b)	(i)	7017 to 7020	3	B1 for 20000 or 2.849[...] or 2.85 or 0.0028[...] seen M1 for their $20000 \div$ their 2.85 or $20 \div$ their 0.00285	Ignore other bound ie a division after an attempt to reach consistent units their 2.85 must be in the range 2.75 to 2.85 inc.; their 0.00285 must be in the range 0.00275 to 0.00285 . BOMO for $20 \div 2.8$ as no attempt to reach consistent units

Question		Answer	Marks	Part marks and guidance	
	(ii)	The truck may not have enough room oe Safety regulations may not allow it	1		Mark their best reason. 0 for we do not know the exact weight of the bricks oe 0 for because the truck may need to carry other loads 0 there may not be enough bricks available
15		7.2[0] or 7.19[9...] nfww	4	M3 for $\sqrt{\frac{1379.02}{1200}}$ oe soi by $1.067[\ldots]$ to $1.072\{\ldots]$ OR M2 for $\frac{1379.02}{1200}$ oe soi by 1.14 to 1.15 OR M1 for $1200 \boldsymbol{x}^{2}=1379.02$ Trials or no working: SC4 for correct answer 7.2[0] or 7.19[9...] on answer line OR SC3 for $1200 \times 1.072[0]^{2}=1379.02$ or $1200 \times 1.0719[9 \ldots]^{2}=1379.02$ OR SC1 for use of $1200 x^{2}$ oe	Condone \% symbol with correct answer. Warning: $1200 \div 179.02=6.7$ Allow $\left(1+\frac{r}{100}\right)$ or any letter, including r, in place of x.

Question		Answer	Marks	Part marks and guidance	
16	(a)	37000	1		Allow 37k
	(b)	22000	2	M1 for figs 43 - figs 21 soi by figs 22	Allow 22k
	(c)	Box plot drawn with: Lowest = 17000 Lower Quartile $=28000$ Median $=37000$ Upper Quartile $=50000$ Highest $=85000$	3	B2 for 4 or 5 correct markers OR B1 for 3 correct markers or 17000 seen	Tolerance $1 / 2$ square Award the markers even if not correctly representing the information eg if 17000 is plotted at 68000 still credit the markers at 28000, 37000 etc.
	(d)	Interquartile range is the same for both oe or Range for CC is higher oe Average/median salaries are the same or The middle 50% of salaries for CC are higher	1 1	.	IQR = 22000 for both BB range $=59000$ CC range $=68000$ Medians $=37000$ for both When given, figures should be correct. Ignore additional incorrect comparisons provided they do not contradict a correct answer given Do not accept comments just about a max (or min) salary B0 for CC has the highest salary BO for highest paid worker at CC earns more than highest paid worker at BB B0 (some) people earn more at CC BO for wider distribution at CC

Question		Answer	Marks	Part marks and guidance	
17	(a)	$\frac{x}{5}-14 \text { oe }$	2	M1 for $\frac{x}{5}$ If $\mathbf{0}$ scored then $\mathbf{S C 1}$ for $\frac{x-14}{5}$ oe	Condone use of another letter for M1 max Must use x in SC1 0 for $x-14 \div 5$
	(b)	-17.5 or $-\frac{35}{2}$ oe nfww	3	M1 for $5\left({ }^{\prime} k\right.$ ' 14) $=$ ' k ' or ' k ' $=\frac{k}{5}-14$ M1FT for $4{ }^{\prime} k=-70$ or better or re-arrangement of their comparable $\mathrm{f}(k)=\mathrm{g}(k)$ equation into the form $a k=b$. M1FT solving their $a k=b$ Alternative (FT as above): M1 for ' k ' $=\frac{k}{5}-14$ M1FT for $\frac{4 k}{5}=-14$ or better M1FT solving their $a k=b$ Trials or no working: SC3 for -17.5	eg $5 k+14=k$ becomes $4 k=-14$ and then $k=-$ 3.5 scores M0 M1FT M1FT $k+70=k$ is not comparable Answers may be in decimal or fractional form but fractions equating to integers should be simplified

Question		Answer	Marks	Part marks and guidance	
18	(a)	Bars are of different width oe	1		$\mathbf{0}$ for large tin looks larger than it is 0 for the bars are different sizes 0 for incorrect/no x-axis
	(b)	11.4[...] nfww	4	B1 for 1.5 or $\frac{3}{2}$ or $3: 2$ soi AND M2 for $10 \times \sqrt[3]{1.5}$ or M1 for $\sqrt[3]{1.5}$ soi by $1.14(47 \ldots)$ If $\mathbf{0}$ scored allow SC1 for 15 as final answer or seen radius of large tin Alternative: B1 for 0.666 to 0.667 or $\frac{2}{3}$ or $2: 3$ soi AND M2 for $10 \div \sqrt[3]{0.666}$ to 0.667 oe or M1 for $\sqrt[3]{0.666}$ to 0.667 oe soi 0.873(...)	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

